19 research outputs found

    Symmetry of Bound and Antibound States in the Semiclassical Limit for a General Class of Potentials

    Full text link
    We consider the semiclassical Schr\"odinger operator −h2∂x2+V(x)-h^2\partial_x^2+V(x) on a half-line, where VV is a compactly supported potential which is positive near the endpoint of its support. We prove that the eigenvalues and the purely imaginary resonances are symmetric up to an error Ce−δ/hCe^{-\delta/h}.Comment: 10 pages, 1 figur

    Learning from DPPs via Sampling: Beyond HKPV and symmetry

    Full text link
    Determinantal point processes (DPPs) have become a significant tool for recommendation systems, feature selection, or summary extraction, harnessing the intrinsic ability of these probabilistic models to facilitate sample diversity. The ability to sample from DPPs is paramount to the empirical investigation of these models. Most exact samplers are variants of a spectral meta-algorithm due to Hough, Krishnapur, Peres and Vir\'ag (henceforth HKPV), which is in general time and resource intensive. For DPPs with symmetric kernels, scalable HKPV samplers have been proposed that either first downsample the ground set of items, or force the kernel to be low-rank, using e.g. Nystr\"om-type decompositions. In the present work, we contribute a radically different approach than HKPV. Exploiting the fact that many statistical and learning objectives can be effectively accomplished by only sampling certain key observables of a DPP (so-called linear statistics), we invoke an expression for the Laplace transform of such an observable as a single determinant, which holds in complete generality. Combining traditional low-rank approximation techniques with Laplace inversion algorithms from numerical analysis, we show how to directly approximate the distribution function of a linear statistic of a DPP. This distribution function can then be used in hypothesis testing or to actually sample the linear statistic, as per requirement. Our approach is scalable and applies to very general DPPs, beyond traditional symmetric kernels

    Dictionary Learning under Symmetries via Group Representations

    Full text link
    The dictionary learning problem can be viewed as a data-driven process to learn a suitable transformation so that data is sparsely represented directly from example data. In this paper, we examine the problem of learning a dictionary that is invariant under a pre-specified group of transformations. Natural settings include Cryo-EM, multi-object tracking, synchronization, pose estimation, etc. We specifically study this problem under the lens of mathematical representation theory. Leveraging the power of non-abelian Fourier analysis for functions over compact groups, we prescribe an algorithmic recipe for learning dictionaries that obey such invariances. We relate the dictionary learning problem in the physical domain, which is naturally modelled as being infinite dimensional, with the associated computational problem, which is necessarily finite dimensional. We establish that the dictionary learning problem can be effectively understood as an optimization instance over certain matrix orbitopes having a particular block-diagonal structure governed by the irreducible representations of the group of symmetries. This perspective enables us to introduce a band-limiting procedure which obtains dimensionality reduction in applications. We provide guarantees for our computational ansatz to provide a desirable dictionary learning outcome. We apply our paradigm to investigate the dictionary learning problem for the groups SO(2) and SO(3). While the SO(2)-orbitope admits an exact spectrahedral description, substantially less is understood about the SO(3)-orbitope. We describe a tractable spectrahedral outer approximation of the SO(3)-orbitope, and contribute an alternating minimization paradigm to perform optimization in this setting. We provide numerical experiments to highlight the efficacy of our approach in learning SO(3)-invariant dictionaries, both on synthetic and on real world data.Comment: 29 pages, 2 figure
    corecore